CONSTANTS

Description	Value
Acceleration of gravity on Earth (g)	9.80 m/s ²
Speed of light in a vacuum (c)	$3.00 \times 10^8 \text{ m/s}$
Planck's constant (h)	$6.63 \times 10^{-34} \text{ J} \cdot \text{s} = 4.14 \times 10^{-15} \text{ eV} \cdot \text{s}$
Electron rest mass (m _e)	$9.11 \times 10^{-31} \text{ kg}$
Proton rest mass (m_p)	$1.67 \times 10^{-27} \text{ kg}$
Elementary charge (e)	$1.60 \times 10^{-19} \mathrm{C}$
Coulomb's constant (k_e)	$8.99 \times 10^9 \mathrm{N} \cdot \mathrm{m}^2/\mathrm{C}^2$
Boltzmann constant (k_b)	$1.38 \times 10^{-23} \text{ J/K}$
Gas constant (R)	8.31 J/(mol•K)
Gravitational constant (G)	$6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$
Permeability of free space (μ_0)	$4\pi \times 10^{-7} \text{ T} \cdot \text{m/A} = 1.26 \times 10^{-6} \text{ T} \cdot \text{m/A}$
Avogadro's number (N _A)	6.02 × 10 ²³ particles/mole
Heat of fusion of water (L_f)	$3.33 \times 10^5 \text{ J/kg}$
Heat of vaporization of water (L_{ν})	$2.26 \times 10^6 \text{ J/kg}$
Specific heat of water (c_w)	$4.19 \times 10^3 \text{ J/(kg} \cdot ^{\circ}\text{C)}$
Density of water (ρ_w)	$1.00 \times 10^3 \text{ kg/m}^3$

FORMULAS

Mathematics	Force and Motion
$C = 2\pi r$	$V_f = V_i + at$
$A = \pi r^2$	$v_f = v_i + at$ $x_f = x_i + v_i t + \frac{1}{2} a t^2$ $v_f^2 - v_i^2 = 2a(x_f - x_i)$
$SA = 4\pi r^2$	$v_f^2 - v_i^2 = 2a(x_f - x_i)$
$V = \frac{4}{3}\pi r^3$	$a_{c} = \frac{v^{2}}{r}$ $F = -kx$
(a, b) denotes a vector with an x-component of a and a y-component of b.	$F = -kx$ $F \le \mu N$
	$\theta_f = \theta_i + \omega_i t + \frac{1}{2} \alpha t^2$ $\omega_f = \omega_i + \alpha t$
	$V = I \infty$
	$a = f\alpha$
	$\mathbf{r}_{cm} = \frac{\sum m\mathbf{r}}{\sum m}$
	$I = \sum r^2$ $\tau = \mathbf{r} \times \mathbf{F}$ $\Sigma \tau = I\alpha$
	$\tau = \mathbf{r} \times \mathbf{F}$
	$\Sigma \tau = I\alpha$

Electricity and Magnetism

$$PE = \frac{1}{2}kx^2$$

$$W = \int \mathbf{F} \cdot d\mathbf{x}$$

$$p = mv$$

$$\Delta \mathbf{p} = \mathbf{F} \Delta t$$

$$\Delta \ell = \alpha \ell_0 \Delta T$$

$$Q = mc\Delta T$$

$$Q = mL$$

$$PV = nRT$$

$$\frac{1}{2}m\overline{v^2} = \frac{3}{2}k_bT$$

$$\Delta E = Q - W$$

$$W = P\Delta V$$

$$e = \frac{T_h - T_c}{T_h}$$

$$KE = \frac{1}{2} / \omega^2$$

$$L = r \times p$$

$$L = 1\omega$$

$$T_k = 273 + T_c$$

$$\mathbf{E} = \frac{\mathbf{F}}{q}$$

$$V = \frac{k_e q}{r}$$

$$R = \frac{\rho \ell}{A}$$

$$P = IV$$

$$C = \frac{Q}{V}$$

$$\mathbf{F} = q\mathbf{v} \times \mathbf{B}$$

$$F = /\ell \times B$$

$$\oint \mathbf{E} \bullet d\mathbf{A} = \frac{q}{\varepsilon_0}$$

$$\oint \mathbf{B} \bullet d\ell = \mu_0 /$$

$$\phi = \int \mathbf{B} \bullet \, d\mathbf{A}$$

$$\varepsilon = -\frac{d\phi}{dt}$$

In questions on electricity and magnetism, the term *current* refers to "conventional current" and the use of the right-hand rule is assumed.

FORMULAS (continued)

Waves, Sound, and Light	Modern Physics
$T = \frac{2\pi}{\omega}$	E = hf
ω $\partial = -\omega^2 X$	$E = hf$ $E = \gamma mc^2$
$x = A \sin \omega t$	$\gamma = \frac{1}{\sqrt{1 - \frac{V^2}{c^2}}}$
$T = 2\pi \sqrt{\frac{m}{k}}$	
$T = 2\pi \sqrt{\frac{L}{g}}$	$hf = \phi + eV$ $\Delta x \Delta p \ge h$
, -	$\Delta x \Delta p \ge h$
$V = f\lambda$ \sqrt{T}	$\Delta E \Delta t \geq h$
$V = \sqrt{\frac{T}{\mu}}$	$p = \frac{h}{\lambda}$
$2L = n\lambda$, <i>n</i> is an integer	λ
$4L = n\lambda$, <i>n</i> is odd	
$n_1 \sin \theta_1 = n_2 \sin \theta_2$	
$n = \frac{C}{V}$	
$\frac{1}{f} = \frac{1}{S_i} + \frac{1}{S_0}$	
$M = \frac{h_i}{h_0} = -\frac{s_i}{s_0}$	
$d\sin\theta = m\lambda$	
$I = I_0 \cos^2 \theta$	

NOTES FOR PHYSICS TEST

Not all formulas necessary are listed, nor are all formulas listed used on this test.

In questions on electricity and magnetism, the term *current* refers to "conventional current" and the use of the right-hand rule is assumed.