CONSTANTS

Description	Value
Avogadro's number	6.02×10^{23}
Molar gas volume at STP	22.4 L
Ideal gas constant (<i>R</i>)	8.31 J/K = 0.0821 L•atm/mol•K
Heat of fusion of water (ΔH_f)	334 J/g = 80 calories/g
Heat of vaporization of water (ΔH_{ν})	2260 J/g = 540 calories/g
Specific heat of water (liquid)	4.18 J/g•°C = 1.0 calorie/g•°C
Specific heat of water (solid or vapor)	2.09 J/g•°C = 0.50 calorie/g•°C
Standard atmospheric pressure (STP)	101.325 kPa (kiloPascals) = 760 mm Hg
Acceleration of gravity on Earth (g)	9.8 m/s ²
Speed of light in a vacuum (<i>c</i>)	$3.00 \times 10^8 \text{ m/s}$
Planck's constant (<i>h</i>)	$6.63 \times 10^{-34} \text{ J} \cdot \text{s} = 4.14 \times 10^{-15} \text{ eV} \cdot \text{s}$
Charge of electron	$-1.60 \times 10^{-19} \text{ C}$
Coulomb's constant (<i>k_e</i>)	$9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$
Gravitational constant (G)	$6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$

FORMULAS

Description	Formula
Ideal gas law	PV = nRT
Boyle's law	$\frac{V}{V'} = \frac{p'}{p}$
Charles' law	$\frac{V}{V'} = \frac{T}{T'}$
Constant acceleration	$v = v_i + at$ $x = x_i + v_i t + \frac{1}{2}at^2$

FORMULAS (co	ontinued)
--------------	-----------

Description	Formula
Mechanics	$F = ma$ $P = mv$ $J = F\Delta t$
Circular motion	$a = \frac{v^2}{r}$
Spring	$F = -kx$ $PE = \frac{1}{2}kx^{2}$
Pendulum	$T = 2\pi \sqrt{\frac{L}{g}}$
Wave relationship	$v = f\lambda$
Speed of waves in a string	$v = \sqrt{\frac{T}{\mu}}$
Energy	$\Delta Q = mc\Delta T$
	$KE = \frac{1}{2}mv^2$
	PE = mgh
Ohm's law	V = IR

NOTES FOR SCIENCE TEST

Not all formulas necessary are listed, nor are all formulas listed used on this test.

In questions on electricity and magnetism, the term *current* refers to "conventional current" and the use of the right-hand rule is assumed.

While attention has been paid to significant figures, no answer should be considered incorrect solely because of the number of significant figures.